Worksheet 15 - Acids and Bases Worksheet

1. Determine whether the substance on the left is an acid or a base.
 a) Mg(OH)$_2$(aq) \rightarrow Mg$^{2+}$(aq) + OH$^-$ (aq)
 b) H$_2$SO$_4$(aq) \rightarrow H$^+$(aq) + SO$_4^{2-}$(aq)
 c) HCl(aq) \rightarrow H$^+$(aq) + Cl$^-$ (aq)
 d) NaOH(aq) \rightarrow Na$^+$(aq) + OH$^-$ (aq)
 e) Ca(OH)$_2$(aq) \rightarrow Ca$^{2+}$(aq) + OH$^-$ (aq)
 f) HF(aq) \rightarrow H$^+$(aq) + F$^-$ (aq)
 g) Be(OH)$_2$(aq) \rightarrow Be$^{2+}$(aq) + OH$^-$ (aq)
 h) HI(aq) \rightarrow H$^+$(aq) + I$^-$ (aq)
 i) LiOH(aq) \rightarrow Li$^+$(aq) + OH$^-$ (aq)

2. Give an example of the pH for each of the following:
 a) a very concentrated base
 b) a dilute basic solution
 c) a very concentrated acid
 d) a dilute acid solution
 e) pure water

3. How much more acidic is a solution with a pH of 4.5 than a solution with a pH of:
 a) 5.5
 b) 6.5
 c) 9.5

4. How much more basic is a solution with a pH of 12.5 than a solution with a pH of:
 a) 10.5
 b) 8.5
 c) 1.5

pH formulas \[[H^+] = 10^{-pH}, \quad pH = -\log [H^+] \]

5. Use the pH formula to calculate the pH of solutions in which the hydrogen ion concentration (in mol/L) is:
 a) 0.1
 b) 0.01
 c) 0.001
 d) 1 x 10$^{-5}$
 e) 1 x 10$^{-4}$

6. Calculate the concentrations of hydrogen ions for the following pH values:
 a) 1.0
 b) 3.0
 c) 5.0
 d) 9.0
 e) 12.0

7. What is the percent ionization in each solution below?
 a) 10 out of 100 molecules of acid ionize
 b) 100 out of 1000 molecules ionize
 c) 3 out of 1000 molecules ionize
 d) 500 out of 1000 molecules ionize

8. If all solutions have the same concentration from question 7 which solution has
 a) the lowest pH
 b) the highest pH

9. Define each of the following terms: concentration of an acid or base, percent ionization of an acid or base, weak acid, strong acid, weak base, strong base.